MATH1010H: WEEK 2

ABSTRACT. In this week, we study the *limit of sequences*. The topics will include *limit of sequences*, monotone convergence theorem, Sandwich theorem, arithmetic of limit.

1. Limit of a sequence

A sequence is a list of numbers, that is

$$a_1, a_2, a_3, \ldots$$

We denote it as $(a_n)_{n=1}^{\infty}$ or (a_n) . Sometimes use a_n as well.

• We can consider the sequence as a function $f: \mathbb{N} \to Y$, that $f(n) = a_n.$

Example 1.1. Sequence appears everywhere!!

- Let $a_n = \frac{1}{n}$. a_n is getting closer and closer to 0
- Let $a_n = (-1)^n \frac{1}{n}$. a_n is getting closer and closer to 0. Let $a_n = 1 + (-1)^n \frac{1}{n}$.
- Let $a_1 = 0.9, a_2 = 0.99, a_3 = 0.999, \ldots$
- Let $b_n = (-1)^n$, that is $-1, 1, -1, 1, -1, \dots$
- Temperature sequence t_1, t_2, t_3, \ldots

Definition 1.2. Let (a_n) be a sequence of real numbers. If n is getting larger and larger, the value a_n is getting closer and closer to some $L \in \mathbb{R}$, then we say that L is the limit of the sequence and we denoted it by

$$\lim_{n \to \infty} a_n = L$$

We could also write $a_n \to L$. In this case, we say that (a_n) is convergent, or (a_n) converges to L. Otherwise, we say that (a_n) is divergent.

• A number L is the limit of the sequence (a_n) if the numbers a_n become closer and closer to L.

Example 1.3.

$$\lim_{n \to \infty} \frac{1}{n} = 0.$$
$$\lim_{n \to \infty} (-1)^n \frac{1}{n} = 0$$

$$\lim_{n \to \infty} (1 + (-1)^n \frac{1}{n}) = 1.$$

$$\lim_{n \to \infty} (-1)^n \quad does \ not \ exists!!$$

Problems:

1. Given (a_n) , is the sequence (a_n) convergent or divergent? For instance: Does the sequence $a_n = \sqrt{n+1} - \sqrt{n}$ convergent? 2. If a_n is convergent then determine the value of its limit.

Example 1.4. Prove that $\lim_{n\to\infty}(\sqrt{n+1}-\sqrt{n})=0.$

Answer: We will often use the following trick. For any a, b > 0 we have

$$a - b = \frac{(a - b)(a + b)}{a + b} = \frac{a^2 - b^2}{a + b}$$

Applying to $\sqrt{n+1} - \sqrt{n}$, we obtain

$$\sqrt{n+1} - \sqrt{n} = \frac{\sqrt{n+1}^2 - \sqrt{n^2}}{\sqrt{n+1} + \sqrt{n}}$$

= $\frac{1}{\sqrt{n+1} + \sqrt{n}}$.

As n is getting larger and larger, the value $\frac{1}{\sqrt{n+1}+\sqrt{n}}$ is getting closer and closer to 0, we obtain the desired result.

Definition 1.5 (Bounded sequence). We say that (a_n) is bounded if there exists a positive number M such that

$$|a_n| \leq M, \quad \forall n \in \mathbb{N}.$$

Theorem 1.6 (Monotone convergence theorem). Let a_n be a monotone sequence of real numbers $(a_n \leq a_{n+1} \text{ or } a_n \geq a_{n+1})$ and the sequence is bounded, then the sequence is convergent.

Example 1.7. Let $a_1 = 2$ and $a_{n+1} = \sqrt{a_n + 2}$. Prove that $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$.

Mathematical induction, is a technique for proving a statement, a formula or an inequality is true for each natural number.

Example 1.8. Prove that $1 + 2 + \ldots + n = \frac{n(n+1)}{2}$. **Answer:** First step: It is hold for n = 1. Second step: Assume the statement is true for the value n = k, that is

$$1 + 2 + 3 + \ldots + k = \frac{k(k+1)}{2}.$$

We intend to show the statement is true for n = k + 1. Applying the assumption, we arrive

$$1 + 2 + \dots + (k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{(k+1)(k+2)}{2}.$$

By mathematical induction, the statement is true for each $n \in \mathbb{N}$.

Answer of Example 1.7. First step: Proves that the statement is true for the initial value. $a_1 \ge a_2$.

Second step: Assume the statement is true for the value k (that is $a_k \ge a_{k+1}$). We intend to show that the statement is true for k+1 (that is $a_{k+1} \ge a_{k+2}$). Observe that

$$a_{k+1} - a_{k+2} = \sqrt{a_k + 2} - \sqrt{a_{k+1} + 2}$$
$$= \frac{a_k - a_{k+1}}{\sqrt{a_k + 2} + \sqrt{a_{k+1} + 2}} \ge 0$$

we obtain that $a_{k+1} \ge a_{k+2}$.

So, by mathematical induction, it is proved that $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$.

Corollary 1.9. Combining Theorem 1.6 with Example 1.7, we conclude that the sequence (a_n) of 1.7 is convergent. (Can you guess the limit of this sequence?)

Let $L = \lim_{n \to \infty} a_n$. Then

$$L = \sqrt{L+2}$$

Squaring the identity we obtain $L^2 = L + 2$, and this gives that L = 2 or L = -1. Since $a_n \ge 0$ for all $n \in \mathbb{N}$, we obtain L = 2.

Theorem 1.10 (A famous constant). Let $a_n = (1 + \frac{1}{n})^n$ then the sequence (a_n) is convergent.

Since, (the proof is given at the end of this note),

- $a_n \leq a_{n+1}$.
- $a_n \leq 3$,

applying monotone convergence theorem we obtain the result. Denote this limit by

$$e := \lim_{n \to \infty} (1 + \frac{1}{n})^n.$$

Now we come to a different method for finding the limit of a given sequence.

Example 1.11. Find

$$\lim_{n \to \infty} (\frac{1}{\sqrt{n}} + \frac{n^2}{n^2 + 10}).$$

Algebraic properties of limits.

Theorem 1.12. Let (a_n) and (b_n) be sequence of real numbers. Suppose that $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} b_n = M$. Then

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = L + M;$$
$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n = L - M.$$

$$\lim_{n \to \infty} a_n b_n = (\lim_{n \to \infty} a_n) (\lim_{n \to \infty} (b_n) = LM;$$

Moreover if $M \neq 0$,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} = \frac{L}{M}$$

Example 1.13. Find $\lim_{n\to\infty}(2+\frac{1}{n})$.

• Let $a_n = c$ then $\lim_{n\to\infty} a_n = c$. Also write it as $\lim_{n\to\infty} c = c$.

Example 1.14. Find $\lim_{n\to\infty} \frac{n^2+3}{5n^2+7}$.

Example 1.15. Find

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n}} + \frac{n^2}{n^2 + 10} \right).$$

Answer: Since

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0,$$

and

$$\lim_{n \to \infty} \frac{n^2}{n^2 + 10} = 1,$$

we arrive

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n}} + \frac{n^2}{n^2 + 10}\right) = \lim_{n \to \infty} \frac{1}{\sqrt{n}} + \lim_{n \to \infty} \frac{n^2}{n^2 + 10} = 1.$$

Theorem 1.16 (Sandwich or squeeze theorem). Let $(a_n), (b_n)$ and (c_n) be sequence of real numbers. If $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$ and $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\lim_{n\to\infty} b_n = L$.

4

Example 1.17. Find $\lim_{n\to\infty} \frac{\sin n}{n}$.

Answer: Note that

$$-\frac{1}{n} \leqslant \frac{\sin n}{n} \leqslant \frac{1}{n}$$

and

$$\lim_{n \to \infty} -\frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} = 0.$$

By sandwich theorem, $\lim_{n\to\infty} \frac{\sin n}{n} = 0.$

Example 1.18. Find $\lim_{n\to\infty} \frac{\sin n^2 + \sqrt{7}\cos n}{n}$.

Answer: Note that

$$-\frac{10}{n} \leqslant \frac{\sin n^2 + \sqrt{7}\cos n}{n} \leqslant \frac{10}{n},$$

and

$$\lim_{n \to \infty} -\frac{10}{n} = \lim_{n \to \infty} \frac{10}{n} = 0.$$

By sandwich theorem, $\lim_{n\to\infty} \frac{\sin n^2 + \sqrt{7} \cos n}{n} = 0.$

Example 1.19. Let $a_n = \frac{n}{n^2+1} + \ldots + \frac{n}{n^2+n}$. Find $\lim_{n \to \infty} a_n$.

Answer: For $1 \leq i \leq n$ we have

$$\frac{n}{n^2+n} \leqslant \frac{n}{n+i} \leqslant \frac{n}{n^2+1},$$

and hence

$$\frac{n^2}{n^2+n} \leqslant a_n \leqslant \frac{n^2}{n^2+1}.$$

Since

$$\lim_{n \to \infty} \frac{n^2}{n^2 + n} = \lim_{n \to \infty} \frac{n^2}{n^2 + 1} = 1,$$

by sandwich theorem, $\lim_{n\to\infty} a_n = 1$.

Now we show that the sequence $a_n = (1 + \frac{1}{n})^n$ is convergent. Note that

$$\left(1+\frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k}$$
$$= 1 + \sum_{k=1}^n \frac{n(n-1)\dots(n-k+1)}{k!} \frac{1}{n^k}$$
$$= 1 + \sum_{k=1}^n \frac{1}{k!} (1-\frac{1}{n})(1-\frac{2}{n})\dots(1-\frac{k-1}{n})$$

Similarly we have

$$\left(1+\frac{1}{n+1}\right)^{n+1} = 1 + \sum_{k=1}^{n+1} \frac{1}{k!} \left(1-\frac{1}{n+1}\right) \left(1-\frac{2}{n+1}\right) \dots \left(1-\frac{k-1}{n+1}\right).$$

For each $1 \leq i \leq n-1$ we have

$$1 - \frac{i}{n} < 1 - \frac{i}{n+1}.$$

Hence,

$$a_n \leqslant a_{n+1}$$

Furthermore, we have

$$\begin{split} \left(1+\frac{1}{n}\right)^n &= 1+\sum_{k=1}^n \frac{1}{k!}(1-\frac{1}{n})(1-\frac{2}{n})\dots(1-\frac{k-1}{n})\\ &\leq 1+\sum_{k=1}^n \frac{1}{k!}\\ &\leq 1+1+\sum_{k=2}^n \frac{1}{k!}\\ &\leq 1+1+\sum_{k=2}^n \frac{1}{(k-1)k}\\ &\leq 1+1+\sum_{k=2}^n (\frac{1}{k-1}-\frac{1}{k})\\ &= 1+1+1-\frac{1}{n}\\ &< 3. \end{split}$$

Thus the sequence (a_n) is a monotone sequence and (a_n) is bounded. By monotone convergence theorem we conclude that (a_n) is convergent.

Note that

$$2 = a_1 \leqslant a_n \leqslant 3.$$

This implies that $2 \leq e \leq 3$. In fact e = 2.718...

The form definition of the limit: If for any $\epsilon > 0$ there exits $N = N_{\epsilon}$ such that $n \ge N$ implies

$$|a_n - L| < \epsilon$$

Then we way that L is the limit of the sequence (a_n) .

6